| 6G (sixth-generation wireless) is the successor to 5G cellular technology. 6G networks will be able to use higher frequencies than 5G networks and provide substantially higher capacity and much lower latency. One of the goals of the 6G Internet will be to support one micro-second latency communications, representing 1,000 times faster -- or 1/1000th the latency -- than one millisecond throughput. The 6G technology market is expected to facilitate large improvements in the areas of imaging, presence technology and location awareness. Working in conjunction with AI, the computational infrastructure of 6G will be able to autonomously determine the best location for computing to occur; this includes decisions about data storage, processing and sharing. Advantages of 6G over 5G 6G is expected to support 1 terabyte per second (Tbps) speeds. This level of capacity and latency will be unprecedented and will extend the performance of 5G applications along with expanding the scope of capabilities in support of increasingly new and innovative applications across the realms of wireless cognition, sensing and imaging. 6G's higher frequencies will enable much faster sampling rates in addition to providing significantly better throughput. The combination of sub-mmWave (e.g. wavelengths smaller than one millimeter) and the use of frequency selectivity to determine relative electromagnetic absorption rates is expected to lead to potentially significant advances in wireless sensing solutions. Additionally, whereas the addition of mobile edge computing (MEC) is a point of consideration as an addition to 5G networks, MEC will be built into all 6G networks. Edge and core computing will become much more seamlessly integrated as part of a combined communications/computation infrastructure framework by the time 6G networks are deployed. This will provide many potential advantages as 6G technology becomes operational, including improved access to artificial intelligence (AI) capabilities. When to expect 6G 6G is expected to launch commercially in 2030. 6G is being developed in response to the increasingly distributed radio access network (RAN) and the desire to take advantage of the terahertz (THz) spectrum to increase capacity and lower latency. While some early discussions have taken place to define 6G, research and development (R&D) activities will start in earnest in 2020. Many of the problems associated with deploying millimeter wave (MM wave) radio for 5G new radio are expected to be solved in time for network designers to address the challenges of 6G. What 6G will look like It's expected that 6G wireless sensing solutions will selectively use different frequencies to measure absorption and adjust frequencies accordingly. This is possible because atoms and molecules emit and absorb electromagnetic radiation at characteristic frequencies and the emission and absorption frequencies are the same for any given substance. 6G will have big implications for many government and industry solutions in public safety and critical asset protection such as: - Threat detection
- Health monitoring
- Feature and facial recognition
- Decision making (in areas like law enforcement and social credit systems)
- Air quality measurements
- Gas and toxicity sensing
Continue reading... |
No comments:
Post a Comment