3D XPoint is memory storage technology jointly developed by Intel and Micron Technology Inc. The two vendors have described the technology as filling a gap in the storage market between dynamic RAM (DRAM) and NAND flash. 3D XPoint has the ability to write data at a bit level, an advantage over NAND. All the bits in a NAND flash block must be erased before data can be written. In theory, this capability enables 3D XPoint to have higher performance and lower power consumption than NAND flash. 3D XPoint has a different architecture from other flash products. It's based on phase-change memory technology, with a transistor-less, cross-point architecture that positions selectors and memory cells at the intersection of perpendicular wires. Those cells, made of an unspecified material, can be accessed individually by a current sent through the top and bottom wires touching each cell. To improve storage density, the 3D XPoint cells can be stacked in three dimensions. Each cell stores a single piece of data, making a cell represent either a 1 or a 0 through a bulk property change in the cell material, which modifies the cell's resistance level. The cell can occupy either a high- or low-resistance state, and changing the resistance level of the cell changes whether the cell is read as a 1 or a 0. Because the cells are persistent, they hold their values indefinitely, even when there is a power loss. Read and write operations occur by varying the amount of voltage sent to each selector. For write operations, a specific voltage is sent through the wires around a cell and selector. This activates the selector and enables voltage through to the cell to initiate the bulk property change. For read operations, a different voltage is sent through to determine whether the cell is in a high- or low-resistance state. |
No comments:
Post a Comment